Abstract

The association between Coronary Artery Calcification (CAC) and osteoporosis has been reported but not fully understood. Therefore, using an original bioinformatic framework we analyzed transcriptomic profiles of 20 elderly women with high CAC score and 31 age- and sex-matching controls from São Paulo Ageing & Health study (SPAH). We integrated differentially expressed microRNA (miRNA) and long-noncoding RNA (lncRNA) interactions with coding genes associated with CAC, in the context of bone-metabolism genes mined from literature. Top non-coding regulators of bone metabolism in CAC included miRNA 497-5p/195 and 106a-5p, and lncRNA FAM197Y7. Top non-coding RNAs revealed significant interplay between genes regulating bone metabolism, vascularization-related processes, chromatin organization, prostaglandin and calcium co-signaling. Prostaglandin E2 receptor 3 (PTGER3), Fibroblasts Growth Factor Receptor 1 (FGFR1), and One Cut Homeobox 2 (ONECUT2) were identified as the most susceptible to regulation by the top non-coding RNAs. This study provides a flexible transcriptomic framework including non-coding regulation for biomarker-related studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.