Abstract

AbstractThe crosslinking chemistry of an anhydride‐cured epoxy resin, in the first 200–400 nm adjacent to a carbonized polyacrylonitrile (PAN) surface (a model for the surface of a carbon fiber), is significantly affected by the humidity history of that surface. Prior humid aging of the carbonized PAN surface increases the subsequent rate of consumption of anhydride curing agent, and decreases the yield of ester crosslinked products. The crosslinking chemistry of an amine‐cured epoxy resin appears unchanged by the presence of the carbonized surface. Dynamic mechanical analysis (DMA) of unidirectional composites made from carbon fibers and the above epoxy resin matrices shows that the damping characteristics of composites made with an epoxy–anhydride matrix are sensitive to the preconditioning history of the carbon fibers, while composites made with an epoxy–amine matrix are unaffected by the preconditioning history of the fibers. Partial removal of the carbon fiber surface coating by dichloromethane extraction does not change the sensitivity of the composites to fiber preconditioning history. These results are rationalized on the basis of the effect moisture adsorbed by the carbonized PAN and by the carbon fiber has on the epoxy resin crosslinking processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call