Abstract
In this article, we show that the crossing number of K3,n in a surface with Euler genus ϵ is ⌊n/(2ϵ + 2)⌋ (n − (ϵ + 1) {1 + ⌊n/(2ϵ + 2)⌋}). This generalizes a result of Guy and Jenkyns, who obtained this result for the torus. © 1996 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.