Abstract

The highly absorbent, antibacterial dressings with a sustained release of the antimicrobial are considered necessary measures to counteract chronic wound biofilm-based infections. This study aimed to analyze wet and dry bacterial cellulose (BC) materials, modified by chemical cross-linking, and impregnated with an antiseptic based on octenidine dihydrochloride (OCT) in the context of its antibiofilm/antibacterial activity, exudate absorption, and cytotoxicity. The native BC was obtained from cost-effective, ecological-friendly potato juice (leftover from the starch industry). The ability to absorb and retain OCT, exudate absorption capacity, the kinetics of OCT release as well as antibiofilm/antibacterial activity of modified BC materials against biofilm-forming and planktonic bacteria (Staphylococcus aureus and Pseudomonas aeruginosa) were investigated. The performed analyses revealed that modified BC materials, thanks to their layered structure with numerous air spaces, were characterized by sustained exudate absorption and OCT release profile, which allowed them to exhibit high antimicrobial activity for up to 7 days, with a reduction of planktonic and biofilm cells of 84–100% and 69–93%, respectively. The modified BC materials showed also no cytotoxicity against fibroblast cell line L929 in vitro and were characterized by firm adhesion to the curved surfaces. These results indicate that cross-linked BC impregnated with OCT may be a particularly promising dressing material (obtained using sustainable processes), especially in the treatment of biofilm-infected, highly-exuding wounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call