Abstract
Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China. Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point. The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg−1 to 21.4 mg kg−1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg−1 to 90.2 mg kg−1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg−1 to 71.8 mg kg−1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content. The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.