Abstract

An independent set I c is a critical independent set if | I c | − | N ( I c ) | ≥ | J | − | N ( J ) | , for any independent set J . The critical independence number of a graph is the cardinality of a maximum critical independent set. This number is a lower bound for the independence number and can be computed in polynomial time. Any graph can be efficiently decomposed into two subgraphs where the independence number of one subgraph equals its critical independence number, where the critical independence number of the other subgraph is zero, and where the sum of the independence numbers of the subgraphs is the independence number of the graph. A proof of a conjecture of Graffiti.pc yields a new characterization of König–Egerváry graphs: these are exactly the graphs whose independence and critical independence numbers are equal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.