Abstract

Certain it is that the critical inclination in the main problem of artificial satellite theory is an intrinsic singularity. Its significance stems from two geometric events in the reduced phase space on the manifolds of constant polar angular momentum and constant Delaunay action. In the neighborhood of the critical inclination, along the family of circular orbits, there appear two Hopf bifurcations, to each of which there converge two families of orbits with stationary perigees. On the stretch between the bifurcations, the circular orbits in the planes at critical inclinmation are unstable. A global analysis of the double forking is made possible by the realization that the reduced phase space consists of bundles of two-dimensional spheres. Extensive numerical integrations illustrate the transitions in the phase flow on the spheres as the system passes through the bifurcations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.