Abstract
The critical exponent of an infinite word is defined to be the supremum of the exponent of each of its factors. For k-automatic sequences, we show that this critical exponent is always either a rational number or infinite, and its value is computable. Our results also apply to variants of the critical exponent, such as the initial critical exponent of Berthé, Holton, and Zamboni and the Diophantine exponent of Adamczewski and Bugeaud. Our work generalizes or recovers previous results of Krieger and others, and is applicable to other situations; e.g., the computation of the optimal recurrence constant for a linearly recurrent k-automatic sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Foundations of Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.