Abstract
One of the long-standing open questions in the theory of parallel computation is the parallel complexity of the integer gcd and related problems, such as modular inversion. We present a lower bound Ω(log n) for the CREW PRAM complexity for inversion modulo certain n-bit integers, including all such primes. For infinitely many moduli, our lower bound matches asymptotically the known upper bound. We obtain a similar lower bound for computing a specified bit in a large power of an integer. Our main tools are certain estimates for exponential sums in finite fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.