Abstract

This paper presents an experimental and numerical study on the creep and fracture behaviour of the polyethylene PE100. The experimental procedure includes monotonic tests on the standard tensile specimen as well as creep-fracture tests on the axisymmetrically cracked specimens. Based on the experimental results, a new primary/secondary creep constitutive model is proposed to simulate the nonlinear and time dependent behaviour of considered material. The material parameters are computed from a leastsquare fit to experimental data obtained from tests at 80 °C. Within the framework of numerical investigations an algorithm for the integration of the constitutive law is derived. The derived algorithm in conjunction with the consistent tangent matrix is implemented in the finite element (FE) code ABAQUS by using the user subroutine CREEP. The accuracy of the proposed numerical algorithm is validated by comparing with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call