Abstract

We have evaluated the importance of the CREB family of transcriptional activators for endochondral bone formation by expressing a potent dominant negative CREB inhibitor (A-CREB) in growth plate chondrocytes of transgenic mice. A-CREB transgenic mice exhibited short-limbed dwarfism and died minutes after birth, apparently due to respiratory failure from a diminished rib cage circumference. Consistent with the robust Ser133 phosphorylation and, hence, activation of CREB in chondrocytes within the proliferative zone of wild-type cartilage during development, chondrocytes in A-CREB mutant cartilage exhibited a profound decrease in proliferative index and a delay in hypertrophy. Correspondingly, the expression of certain signaling molecules in cartilage, most notably the Indian hedgehog (Ihh) receptor patched (Ptch), was lower in A-CREB expressing versus wild-type chondrocytes. CREB appears to promote Ptch expression in proliferating chondrocytes via an Ihh-independent pathway; phospho-CREB levels were comparable in cartilage from Ihh(-/-) and wild-type mice. These results demonstrate the presence of a distinct signaling pathway in developing bone that potentiates Ihh signaling and regulates chondrocyte proliferation, at least in part, via the CREB family of activators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call