Abstract

Integrating multimode optical properties into a single material simultaneously is promising for improving the security level of fluorescent anticounterfeiting. However, there has been a lack of affirmative principles and unambiguous mechanisms that guide the design of such material. Herein, we achieve color-tunable photoluminescence, long-lived persistent emission, thermally stimulated luminescence, and reversible photochromism in a Tb3+-activated Mg4Ga8Ge2O20 phosphor by employing the F-like color center as an energy reservoir. It is experimentally revealed that the role of oxygen vacancies in the lattice of Mg4Ga8Ge2O20 is assumed as the main trap for the photogenerated electronic carriers, which is the origin of metastable F-like color centers. The formed color centers with the estimated depths of 0.48-0.95 eV could suppress the recombination of electron-hole pairs, thus giving rise to good photochromism and persistent emission properties, while under various modes of stimulation such as thermal attack or photo radiation, a quick recombination of electron holes happens, accounting for the bright thermally stimulated luminescence and the accompanied color bleaching. Finally, we fabricate a flexible phosphor/polymer composite by encapsulating the developed phosphor into a polydimethylsiloxane matrix, and conceptual demonstration of the composite for the high-security fluorescent anticounterfeiting technology, by virtue of multimode optical phenomena as authentication signals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call