Abstract

ABSTRACTHigh resolution transmission electron microscopy techniques have been used to obtain information on the contrast, spatial distribution, size and annealing behaviour of the damaged regions produced within individual collision cascades by heavy ion (As, Sb and Bi) bombardment (10–120 KeV) of silicon with 1.0 × 1011 – 6.0 × 1011 ions cm−2. The fraction of the theoretical cascade volume occupied by a heavily damaged region steadily increased as the average deposited energy density within the cascade increased. At high energy densities, the visible damage produced in the main cascade consisted of a single, isolated damaged region. With decreasing values of (i.e. increasing ion implant energies), there was an increasing tendency for multiple damaged regions to be produced within the main cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.