Abstract

The notion of Schematic System has been introduced by Parikh in the early seventies. It is a metamathematical notion describing the concept of deduction system and the operation of substitution of terms and formulas in it. We show a generalization of the Craig Interpolation Theorem for a natural class of schematic systems while we determine sufficient conditions for a schematic system to enjoy Interpolation. These conditions are much weaker than the usual conditions of symmetricity that are satisfied by the logics usually studied. The proof of the Craig Interpolation Theorem that we propose is a refinement of Maehara’s construction and it is based on the idea of tracing the flow of formulas in a proof.KeywordsSchematic SystemSchematic AxiomPredicate VariableSchematic RuleMain FormulaThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.