Abstract

Pavement crack detection is of significant importance in ensuring road safety and smooth traffic flow. However, pavement cracks come in various shapes and forms which exhibit spatial continuity, and algorithms need to adapt to different types of cracks while preserving their continuity. To address these challenges, an innovative crack detection framework, CrackDiff, based on the generative diffusion model, is proposed. It leverages the learning capabilities of the generative diffusion model for the data distribution and latent spatial relationships of cracks across different sample timesteps and generates more accurate and continuous crack segmentation results. CrackDiff uses crack images as guidance for the diffusion model and employs a multi-task UNet architecture to predict mask and noise simultaneously at each sampling step, enhancing the robustness of generations. Compared to other models, CrackDiff generates more accurate and stable results. Through experiments on the Crack500 and DeepCrack pavement datasets, CrackDiff achieves the best performance (F1 = 0.818 and mIoU = 0.841 on Crack500, and F1 = 0.841 and mIoU = 0.862 on DeepCrack).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.