Abstract

In this paper, an implementation of the complex-frequency-shifted perfectly matched layer (CPML) is developed for three-dimensional hybrid implicit-explicit (HIE) finite-difference time-domain (FDTD) method based on auxiliary differential equation (ADE). Because of the use of the ADE technique, this method becomes more straightforward and easier to implement. The formulations for the HIE-FDTD CPML are proposed. Numerical examples are given to verify the validity of the presented method. Results show that, both HIE-CPML and FDTD-CPML have almost the same reflection error, while their reflection error is about 30 dB, which is less than HIE Mur’s first-order results. The contour plots indicate that the maximum relative reflection as low as-72 dB is achieved by selecting and .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.