Abstract

The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play.

Highlights

  • The primarily monochromatic blue spectrum that characterizes large areas of the photic ocean provides a unique filtered-light environment for visual organisms

  • The photosynthetic apparatus associated with chlorophyll fluoresces red and provides a background of biofluorescence in areas of high algal growth on coral reefs

  • Our findings identify a widespread and previously unrecognized evolutionary phenomenon that provides new insights into the evolution of marine fishes and the function of light and visual systems in a marine environment, as well as providing a framework for the discovery of additional novel fluorescent proteins

Read more

Summary

Introduction

The primarily monochromatic blue spectrum that characterizes large areas of the photic ocean provides a unique filtered-light environment for visual organisms. Compared to the terrestrial environment, marine organisms reside in a spectrally restricted visual domain. The red, orange, yellow, and green components of sunlight are selectively removed with depth resulting in a narrow, near-monochromatic, band of blue light between 470 and 480 nm [1]. Restricted illumination in the ocean provides unique lighting conditions for organisms to exploit fluorescence to produce visual contrast and patterns. The photosynthetic apparatus associated with chlorophyll fluoresces red and provides a background of biofluorescence in areas of high algal growth on coral reefs

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.