Abstract

This paper introduces the covering path problem on a grid (CPPG) that finds the cost-minimizing path connecting a subset of points in a grid such that each point that needs to be covered is within a predetermined distance of a point from the chosen subset. We leverage the geometric properties of the grid graph, which captures the road network structure in many transportation problems, including our motivating setting of school bus routing. As defined in this paper, the CPPG is a biobjective optimization problem comprising one cost term related to path length and one cost term related to stop count. We develop a trade-off constraint, which quantifies the trade-off between path length and stop count and provides a lower bound for the biobjective optimization problem. We introduce simple construction techniques to provide feasible paths that match the lower bound within a constant factor. Importantly, this solution approach uses transformations of the general CPPG to either a discrete CPPG or continuous CPPG based on the value of the coverage radius. For both the discrete and continuous versions, we provide fast constant-factor approximations, thus solving the general CPPG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.