Abstract
Summary It is very common in applied frequentist (“classical”) statistics to carry out a preliminary statistical (i.e. data‐based) model selection by, for example, using preliminary hypothesis tests or minimizing AIC. This is usually followed by the inference of interest, using the same data, based on the assumption that the selected model had been given to us a priori. This assumption is false and it can lead to an inaccurate and misleading inference. We consider the important case that the inference of interest is a confidence region. We review the literature that shows that the resulting confidence regions typically have very poor coverage properties. We also briefly review the closely related literature that describes the coverage properties of prediction intervals after preliminary statistical model selection. A possible motivation for preliminary statistical model selection is a wish to utilize uncertain prior information in the inference of interest. We review the literature in which the aim is to utilize uncertain prior information directly in the construction of confidence regions, without requiring the intermediate step of a preliminary statistical model selection. We also point out this aim as a future direction for research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.