Abstract
In a Poisson process, it is well-known that the forward and backward recurrence times at a given time point t are independent random variables. In a renewal process, although the joint distribution of these quantities is known (asymptotically), it seems that very few results regarding their covariance function exist. In the present paper, we study this covariance and, in particular, we state both necessary and sufficient conditions for it to be positive, zero or negative in terms of reliability classifications and the coefficient of variation of the underlying inter-renewal and the associated equilibrium distribution. Our results apply either for an ordinary renewal process in the steady state or for a stationary process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.