Abstract
Herein, the optional and controllable growth of Bi2S3 onto NH2-MIL-125 via covalent conjunction strategy was reported. The experimental results demonstrate that the obtained heterojunction exhibits boosting photocatalytic reduction CO2 and organic dye degradation. The 18-Bi2S3@NH2-MIL-125-SH displays the highest yield of 12.46 μmol g−1h−1 of CO, >13 times that of pure NH2-MIL-125. Meanwhile, the reaction kinetic of 18-Bi2S3@NH2-MIL-125-SH in the degradation of methylene blue is uppermost, which is 160 times than that of the commercial P25. The enhancement of photocatalytic performance could be ascribed to the covalent coordination-driven intimate interfacial interaction in n-scheme heterojunction. Meanwhile, the plausible mechanism was also investigated by UV–vis diffuse reflectance (UV–vis), photoluminescence (PL), electrochemical photocurrent, electron spin resonance (ESR) and electrochemical impedance spectroscopy (EIS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Colloid and Interface Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.