Abstract

Abstract Transverse circulations in the exit and entrance regions of jet streaks are investigated through numerical simulation, a case study, and an application of the isallobaric wind equation in isentropic coordinates, to study the interaction between upper and lower tropospheric jets and the development of severe convective storms. A hybrid isentropic-sigma coordinate numerical model is used to simulate the mass and momentum adjustments associated with a jet streak propagating in a zonal channel. The numerical results depict a two-layer mass adjustment in the exit and entrance region of the jet streak. The results also verify that the isallobaric wind on lower isentropic surfaces is a primary component of the return branches of transverse circulations and is foxed by the two-layer mass adjustment accompanying the propagating jet streak. Results from the case study of a severe weather out- break show that 1) a low-level jet (LLJ) beneath the exit region of an upper tropospheric jet streak is embedded in...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call