Abstract

The rate of nonphosphorylating electron transport (in the absence of ADP and inorganic phosphate) in well-coupled (ATP/2e(-) = 0.9-1.1) maize mesophyll chloroplasts is not modulated by external pH (6.5-8.5), low levels of ADP or ATP, or energy transfer inhibitors, e.g. triphenyltin and Hg(2+) ions. In contrast nonphosphorylating electron flow in pea chloroplasts is sensitive to alterations in medium pH, and to the presence of adenine nucleotides and energy transfer inhibitors in the assay medium. Although ATP is without effect on the rate of basal electron transport in maize chloroplasts, steady-state proton uptake is stimulated 3- to 5-fold by low levels of ATP. These results suggest that differences may exist in the manner in which the coupling factor complex controls proton efflux from the intrathylakoid space in C(3) and C(4) mesophyll chloroplasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call