Abstract

Distributed energy systems (DES) with hybrid sources has become a more effective way to increase the flexibility of energy supply. Current relevant research on DES design optimization strives to improve system efficiency and sustainability through independent application of subsystem interconnection and demand response. This paper aims to analyze the coupling impact of the above two strategies on the performance of DES. A general multi-objective mathematical programming model is proposed to work out the optimal design and operation scheme of DES, as well as flexible management of electricity, cooling energy, heating energy and steam. The minimum annual cost, carbon emission and energy demand deviation are set as objective functions. Additionally, the augmented ε-constraint method is introduced to search for the trade-off among three indicators. A composite community in China is taken as a case and three scenarios are carried out for comparison. Results reveal that the annual cost and carbon emission are further decreased by 7.3% and 32.1% under the coupling impact of subsystem interconnection and demand response. Eventually, the preferred strategy is analyzed in detailed to illustrate how this coupling strategy further improves the performance of DES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.