Abstract
Previous work has demonstrated a persisting, free-running, circadian rhythm of cell division in the P4ZUL photosynthetic mutant of the alga Euglena gracilis Klebs (Strain Z) Pringsheim grown organotrophically in continuous light or darkness at 19 degrees C following prior synchronization by a repetitive LD:10,14 light cycle. A similar circadian rhythmicity has been recently discovered in the W6ZHL heat-bleached and the Y9ZNalL naladixic acid-induced mutants of Euglena grown under comparable conditions. Over extended timespans, however, these mutants appear to gradually lose first their ability to display persisting overt rhythms, and then even their capability of being entrained by imposed LD cycles. These properties can be restored by the addition of certain sulfur-containing compounds to the medium including cysteine, methionine, dithiothreital, sodium monosulfide, sodium sulfite, and sodium thiosulfate, as well as thioglycolic [mercaptoacetic] acid. The implications of these findings toward biological clock mechanisms are discussed: It appears that some sort of coupling process is operating as opposed to the initiation of an underlying oscillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.