Abstract

Redox transformation of mercury (Hg) is critical for Hg exchange at the air-water interface. However, the superoxide radicals (O2•─) contribution of microalgal-fungal symbiotic systems in lake water to Hg(II) reduction is mainly unknown. Here, we studied the enhanced potential for O2•─ production by the coupling effect between microalgae and fungi. The relationships between microenvironment, microorganisms, and O2•─ production were also investigated. Furthermore, the implication of O2•─ for Hg(II) reduction was explored. The results showed that the coupling effect of microalgae and fungi enhanced O2•─ generation in the symbiotic systems, and the O2•─ generation peaked on day 4 in the lake water at 160.51 ± 13.06–173.28 ± 18.21 μmol/kg FW (fresh weight). In addition, O2•− exhibited circadian fluctuations that correlated with changes in dissolved oxygen content and redox potential on the inter-spherical interface of microalgal-fungal consortia. Partial least squares path modeling (PLS-PM) indicates that O2•─ formation was primarily associated with microenvironmental factors and microbial metabolic processes. The experimental results suggest that O2•─ in the microalgal-fungal systems could mediate Hg(II) reduction, promoting Hg conversion and cycling. The findings highlight the importance of microalgae and fungal symbiotic systems in Hg transformation in aquatic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.