Abstract

The low-lying Pearl River Delta in South China is subject to severe flood threats due to watershed floods, sea level rise, and storm surges. It is still unknown to what extent and how far inland storm surges and sea level rise impact the extreme flood stages. This study investigated the coupling effect of flood discharge and storm surge on the extreme flood stages in the Pearl River Delta by using on site observations and simulations generated by the Hydrologic Engineering Center-River Analysis System model. The results show that flood discharges dominated the flood stages in the middle and upper Pearl River Delta, while the storm surges had maximum impact near the river mouth. The storm surges and flood stages showed a significant increase after 2002 in the Hengmen waterway. The design flood stages for the post-2002 period were 0.23–0.89 m higher than the pre-2002 ones at Hengmen at the six return periods from 5 to 200 years examined in this study. Their difference declined toward the upper waterway and reduced to zero about 23 km away from the Hengmen outlet. The coincidence of extreme flood discharges and storm surges further escalates the extreme flood stages in the lower 30 km of estuarine waterways. Our results quantify the severe threats due to sea level rise and intensified storm surges in the lower Pearl River Delta, and are significant for urban planning and designing and managing flood control facilities in the Pearl River Delta and in other coastal fluvial deltas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call