Abstract
Up to now, unbalanced mechanical properties and poor heat resistance have become two major problems of polylactic acid (PLA). In this study, the coupling between Cellulose nanocrystal (CNC) and strong shearing field formed a unique hierarchical structure. Compared with pure PLA, the tensile strength of DPIM PLA/CNC increased from 57.9 MPa to 79.6 MPa without sacrificing the toughness of PLA, and the vicat softening temperature of DPIM PLA/CNC increased from 60 °C to 155 °C. The microstructure of PLA/CNC composites was analyzed by SEM, SAXS and WAXD, and it was found that the coupling effect of CNC and strong shear flow field could significantly change the crystallization behavior of PLA. CNC could increase PLA shish length from 251 nm to 889 nm under the action of shear field. At the same time, due to this coupling effect, more PLA shish-kebab structures were induced at the interface. This special hierarchical structure composed of CNC and PLA Shish-Kebab is of great significance and can provide important guidance for achieving the balance of strength and toughness of polymer materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.