Abstract

We present a benchmark study of a combined multipole spin-spin coupling constant (SSCC) polarizability/reaction field (MJP/RF) approach to the calculation of both specific and bulk solvation effects on SSCCs of solvated molecules. The MJP/RF scheme is defined by an expansion of the SSCCs of the solvated molecule in terms of coupling constant dipole and quadrupole polarizabilities and hyperpolarizabilities derived from single molecule ab initio calculations. The solvent electric field and electric field gradient are calculated based on data derived from molecular dynamics (MD) simulations thereby accounting for solute-solvent dynamical effects. The MJP/RF method is benchmarked against polarizable QM/MM calculations for the one-bond N-H coupling constant in N-methylacetamide. The best agreement between the MJP/RF and QM/MM approaches is found by truncating the electric field expansion in the MJP/RF approach at the linear electric field level. In addition, we investigate the sensitivity of the results due to the choice of one-electron basis set in the ab initio calculations of the coupling constant (hyper-)polarizabilities and find that they are affected by the basis set in a way similar to the coupling constants themselves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call