Abstract
ABSTRACTThe exchange–correlation energy, central to density-functional theory, may be represented in terms of the coupling constant averaged (CCA) exchange–correlation energy density. We present an approach to calculate the CCA energy density using accurate ab initio methods and its application to simple atomic systems. This function provides a link between intrinsically non-local, many-body electronic structure methods and simple local and semi-local density-functional approximations (DFAs). The CCA energy density is resolved into separate exchange and correlation terms and the features of each compared with those of quantities commonly used to construct DFAs. In particular, the more complex structure of the correlation energy density is found to exhibit features that align well with those present in the Laplacian of the density, suggesting its role as a key variable to be used in the construction of improved semi-local correlation functionals. The accurate results presented in this work are also compared with those provided by the Laplacian-dependent Becke–Roussel model for the exchange energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Molecular Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.