Abstract

The Earth is a rapidly rotating body. The centrifugal pull makes its shape resemble a flattened ellipsoid and Coriolis forces support waves in its fluid core, known as inertial waves. These waves can lead to global oscillations, or modes, of the fluid. Periodic variations of the Earth's rotation axis (nutations) can lead to an exchange of angular momentum between the mantle and the fluid core and excite these inertial modes. In addition to viscous torques that exist regardless of the shape of the boundaries, the small flattening of the core-mantle boundary (CMB) allows inertial modes to exert pressure torques on the mantle. These torques effectively couple the rigid-body dynamics of the Earth with the fluid dynamics of the fluid core. Here we present the first high resolution numerical model that solves simultaneously the rigid body dynamics of the mantle and the Navier-Stokes equation for the liquid core. This method takes naturally into account dissipative processes in the fluid that are ignored in current nutation models. We find that the Free Core Nutation (FCN) mode, mostly a toroidal fluid flow if the mantle has a large moment of inertia, enters into resonance with nearby modes if the mantle's moment of inertia is reduced. These mode interactions seem to be completely analogous to the ones discovered by Schmitt (2006) in a uniformly rotating ellipsoid with varying flattening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.