Abstract
The thermo-hydraulic-mechanical behaviour of a large in situ heating test, the Buffer/Container Experiment (BCE), carried out at Atomic Energy of Canada's underground research laboratory, is considered. The work can be seen as an extension of the authors' previous research, investigating the behaviour of a large-scale test, the so-called ‘isothermal test’, to now include heating effects. Suggestions related to the micro–macro behaviour of bentonitic buffer materials subjected to resaturation in confined non-isothermal conditions are explored. Simulation of pre-heating phases of the experiment demonstrates the ability of the model to describe the hydraulic regime in the host rock and isothermal infiltration into the buffer. Consideration of the heating phase confirms that the temperature field is well understood, with a good correlation between the numerical and experimental results. In the moisture field it is found that the interaction between the emplaced buffer and host rock is of considerable importance. It is found that inclusion of micro–macro interaction effects, by way of consideration of the impact of swelling and micro–macro interactions on the hydraulic conductivity of the material, yielded significantly improved correlations between observed and calculated results in the moisture field. The results of the numerical simulations suggest that the interaction between the emplaced buffer and host rock is strongly influenced by the micro–macro behaviour of the bentonitic buffer material. It is concluded that the consideration of the impact of micro–macro interactions on moisture flow in bentonitic buffers is of considerable importance, and may be of some significance in considering the total resaturation time as part of the performance assessment of a nuclear waste disposal repository.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.