Abstract
We consider a system of two coupled particles evolving in a periodic and spatially symmetric potential under the influence of external driving and damping. The particles are driven individually in such a way that in the uncoupled regime, one particle evolves on a chaotic attractor, while the other evolves on regular periodic attractors. Notably only the latter supports coherent particle transport. The influence of the coupling between the particles is explored, and in particular how it relates to the emergence of a directed current. We show that increasing the (weak) coupling strength subdues the current in a process, which in phase-space, is related to a merging crisis of attractors forming one large chaotic attractor in phase-space. Further, we demonstrate that complete current suppression coincides with a chaos-hyperchaos transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.