Abstract

The outbreak of coronavirus disease 2019 (COVID-19) threatens the health and safety of all humanity. This disease has a prominent feature: the presymptomatic and asymptomatic viral carriers can spread the disease. It is crucial to estimate the impact of this undetected transmission on epidemic outbreaks. Currently, disease-related information has been widely disseminated by the mass media. To investigate the impact of both individuals and mass media information dissemination on the epidemic spreading, we establish a new UAU-SEIR (Unaware–Aware–Unaware–Susceptible–Exposed–Infected–Recovered) model with mass media on two-layer multiplex networks. In the model, E-state individuals denote asymptomatic infections, and a single node connecting to all individuals denotes the mass media. In this work, we use the Microscopic Markovian Chain Approach (MMCA) to derive the epidemic threshold. Comparing the MMCA theoretical results with Monte Carlo (MC) simulations, we find that the MMCA has a good consistency with MC simulations. In addition, we also analyze the impact of model parameters on epidemic spreading and epidemic threshold. The results show that reducing the proportion of asymptomatic infections, accelerating the dissemination of information between individuals and the dissemination of information via the mass media can effectively inhibit the epidemic spreading and raise the epidemic threshold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call