Abstract

Imidazolium-based poly(ionic liquid) brushes were attached to spherical silica nanoparticles bearing various functionalities by using a surface-initiated atom transfer radical polymerization ("grafting from" technique). A temperature-programmed desorption process was applied to evaluate and analyze the carbon dioxide adsorption performance of the synthesized polymer brushes. The confined structure of the surface-attached polymer chains facilitates gas transport and adsorption, leading to an enhanced adsorption capacity of carbon dioxide molecules compared with pure polymer powders. Temperature-programmed desorption profiles of the synthesized polymer brushes after carbon dioxide adsorption reveal that the substituent groups on the nitrogen atom at the 3-position of the imidazole ring, as well as the associated anions significantly affect the adsorption capacity of functionalized poly(ionic liquid) brushes. Of the tested samples, amine-functionalized poly(ionic liquid) brushes associated with hexafluorophosphate ions exhibit the highest carbon dioxide adsorption capacity of 2.56 mmol g-1 (112.64 mg g-1 ) at 25 °C under a carbon dioxide partial pressure of 0.2 bar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.