Abstract

In [5], Kleene extended previous notions of computations to objects of higher finite type in the maximal type-structure of functionals given by:Tp(0) = N = the natural numbers,Tp(n + 1) = NTp(n) = the set of total maps from Tp(n) to N.He gave nine schemata, S1–S9, for describing algorithms for computations from a finite list of functionals, and indices to denote these algorithms. It is generally agreed that S1-S9 give a natural concept of computations in higher types.The type-structure of countable functions, Ct(n) for n ϵ N, was first developed by Kleene [6] and Kreisel [7]. It arises from the notions of ‘constructivity’, and has been extensively studied as a domain for higher type recursion theory. Each countable functional is globally described by a countable amount of information coded in its associate, and it is determined locally by a finite amount of information about its argument. The countable functionals are well summarised in Normann [9], and treated in detail in Normann [8].The purpose of this paper is to discuss a generalisation of the countable functionals, which we shall call the countably based functions, Cb(n) for n ϵ N. It is suggested by the notions of ‘predicativity’, in which we view N as a completed totality, and build higher types on it in a constructive manner. So we shall allow quantification over N and include application of 2E in our schemata. Each functional is determined locally by a countable amount of information about its argument, and so is globally described by a continuum of information coded in its associate, which will now be a type-2 object. This generalisation, obtained via associates, was proposed by Wainer, and seems to reflect topological properties of the countable functionals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.