Abstract

The “Coulomb phase” is an emergent state for lattice models (particularly highly frustrated antiferromagnets), which have local constraints that can be mapped to a divergence-free “flux.” The coarse-grained versions of this flux or polarization behave analogously to electric or magnetic fields; in particular, defects at which the local constraint is violated behave as effective charges with Coulomb interactions. I survey the derivation of the characteristic power-law correlation functions and the pinch points in reciprocal space plots of diffuse scattering, as well as applications to magnetic relaxation, quantum-mechanical generalizations, phase transitions to long-range-ordered states, and the effects of disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.