Abstract
Abstract A major problem in evolutionary theory is to explain the widespread occurrence of sexual recombination. This is particularly difficult in anisogamous species where the familiar ‘two-fold cost of sex’ is encountered. Another cost has recently been identified: that fusion of gametes allows intracellular parasites or deleterious ‘selfish’ genomes to invade a population. These costs of anisogamy and the ability of cytoplasmic agents to invade a sexual population are quantified, allowing the costs and consequences of different modes of reproduction to be compared. It is found that the costs of selfish elements are likely to be very high and, in particular, that isogamous sexual reproduction (the putative ‘primitive’ form) is not cost-free, but incurs a fitness reduction of the order of 90%; thus a large selective disadvantage occurs in the initial evolution of sex which is ignored in standard analysis. Even once anisogamy has evolved, the low levels of ‘paternal leakage’ observed in many extant organisms may allow selfish cytoplasmic elements to spread, resulting in moderate to large decreases in host population fitness. However, much of the cost of selfish elements is avoided in sexual lifecycles with a large number of asexual cellular divisions between sexual reproduction: this greatly impedes the spread of selfish agents and reduces the fitness loss attributable to selfish elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.