Abstract

We study the impact of nonconvexity on the complexity of nonsmooth optimization, emphasizing objectives such as piecewise linear functions, which may not be weakly convex. We focus on a dimension-independent analysis, slightly modifying a 2020 black-box algorithm of Zhang-Lin-Jegelka-Sra-Jadbabaie that approximates an ϵ-stationary point of any directionally differentiable Lipschitz objective using [Formula: see text] calls to a specialized subgradient oracle and a randomized line search. Seeking by contrast a deterministic method, we present a simple black-box version that achieves [Formula: see text] for any difference-of-convex objective and [Formula: see text] for the weakly convex case. Our complexity bound depends on a natural nonconvexity modulus that is related, intriguingly, to the negative part of directional second derivatives of the objective, understood in the distributional sense. Funding: This work was supported by the National Science Foundation [Grant DMS-2006990].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.