Abstract

Life on Earth provides a unique biological record from single-cell microbes to technologically intelligent life forms. Our evolution is marked by several major steps or innovations along a path of increasing complexity from microbes to space-faring humans. Here we identify various major key innovations, and use an analytical toolset consisting of a set of models to analyse how likely each key innovation is to occur. Our conclusion is that once the origin of life is accomplished, most of the key innovations can occur rather readily. The conclusion for other worlds is that if the origin of life can occur rather easily, we should live in a cosmic zoo, as the innovations necessary to lead to complex life will occur with high probability given sufficient time and habitat. On the other hand, if the origin of life is rare, then we might live in a rather empty universe.

Highlights

  • All discussion and teaching on the evolution of humans has embedded in it the idea of key innovations on the path from non-living matter to humanity

  • We analyse the transitions or key innovations within a theoretical framework that allows us to ask whether the evolution of a technology-using species on Earth is an extremely unlikely event, or whether complex, smart and potentially technological beings are highly likely to evolve on an habitable planet in the time available to it (10 Gigayears (Ga) in the case of the Earth orbiting around our Sun)

  • As with the Origin of Life, this is unsatisfactory as it undermines our approach, but for completeness we summarise current thinking on the evolution of oxygenesis here so as to rule out a clear Many Paths process

Read more

Summary

Introduction

All discussion and teaching on the evolution of humans has embedded in it the idea of key innovations on the path from non-living matter to humanity. We analyse the transitions or key innovations within a theoretical framework that allows us to ask whether the evolution of a technology-using species on Earth is an extremely unlikely event, or whether complex, smart and potentially technological beings are highly likely to evolve on an habitable planet in the time available to it (10 Gigayears (Ga) in the case of the Earth orbiting around our Sun). This is a highly anthropocentric approach, but we take it deliberately because we are interested in the evolution of complex and intelligent organisms such as ourselves (McShea and Simpson [2]). We are not arguing for what we will here parody as

Objectives
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.