Abstract

Using cosmological simulations, we show that the cosmic web of dwarf galaxies in a warm dark matter (WDM) universe, wherein low mass halo formation is heavily suppressed, is nearly indistinguishable to that of a cold dark matter (CDM) universe whose low mass halos are not seen because galaxy formation is suppressed below some threshold mass. Low mass warm dark matter halos are suppressed nearly equally in all environments. For example, WDM voids in the galaxy distribution are neither larger nor emptier than CDM voids, once normalized to the same total galaxy number density and assuming galaxy luminosity scales with halo mass. It is thus a challenge to find hints about the dark matter particle in the cosmic web of galaxies. However, if the scatter between dwarf galaxy luminosity and halo properties is large, low mass CDM halos would sometimes host bright galaxies thereby populating voids that would be empty in WDM. Future surveys that will capture the small scale clustering in the local volume could thus help determine whether the CDM problem of the over-abundance of small halos with respect to the number density of observed dwarf galaxies has a cosmological solution or an astrophysical solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call