Abstract

Abstract We report the serendipitous detection of an H2-bearing damped Lyα absorber at z = 0.576 in the spectrum of the QSO J0111–0316 in the Cosmic Ultraviolet Baryon Survey. Spectroscopic observations from Hubble Space Telescope-COS in the far-ultraviolet reveal a damped absorber with log[N(H i)/cm−2] = 20.1 ± 0.2 and log[N(H2)/cm−2] . The diffuse molecular gas is found in two velocity components separated by Δ ν ≈ 60 km s−1, with >99.9% of the total H2 column density concentrated in one component. At a metallicity of ≈50% of solar, there is evidence for Fe enhancement and dust depletion, with a dust-to-gas ratio κ O ≈ 0.4. A galaxy redshift survey conducted with IMACS and LDSS-3C on Magellan reveals an overdensity of nine galaxies at projected distance d ≤ 600 proper kpc (pkpc) and line-of-sight velocity offset Δ ν g ≤ 300 km s−1 from the absorber. The closest is a massive, early-type galaxy at d = 41 pkpc that contains ≈70% of the total stellar mass identified at d ≤ 310 pkpc of the H2 absorber. The close proximity of the H2-bearing gas to the quiescent galaxy and the Fe-enhanced chemical abundance pattern of the absorber suggest a physical connection, in contrast to a picture in which DLAs are primarily associated with gas-rich dwarfs. This case study illustrates that deep galaxy redshift surveys are needed to gain insight into the diverse environments that host dense and potentially star-forming gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.