Abstract

Energetic non-thermal particles, or cosmic rays, are a major component of astrophysical plasmas next to magnetic fields, radiation, and thermal gas. Cosmic rays are usually sub-dominant in density but carry as much pressure as the thermal plasma background. In some cases, cosmic rays drift at faster speeds with respect to the normal modes' phase speeds of the background plasma. Because of this, cosmic rays are a strong source of free energy that causes new classes of kinetic or convective instabilities. Recent years have seen the development of intense analytical and numerical efforts to analyze the onset of an instability produced by the motion of these particles at fast bulk speeds: this is the streaming instability. The streaming instability has been applied to different space plasmas and astrophysical contexts like strong shocks, jets, or in interstellar and intergalactic medium studies. Streaming instabilities participate in the production of magnetic turbulence at scales corresponding to the gyroradius of the particles. By scattering off their self-generated waves, cosmic rays are coupled to the background thermal plasma. This mechanism is able to self-confine cosmic rays around sources and launch winds out of the disk of the galaxy, hence impacting galactic matter dynamics and ultimately the galactic star formation rate. We discuss a few science cases, which should be accessible in the near future for analytical calculations and numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call