Abstract

We present high signal-to-noise optical spectra for 67 low-redshift (0.1 < z < 0.4) galaxies that lie within close projected distances (5 kpc < rho < 150 kpc) of 38 background UV-bright QSOs. The Keck LRIS and Magellan MagE data presented here are part of a survey that aims to construct a statistically sampled map of the physical state and metallicity of gaseous galaxy halos using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST). We provide a detailed description of the optical data reduction and subsequent spectral analysis that allow us to derive the physical properties of this uniquely data-rich sample of galaxies. The galaxy sample is divided into 38 pre-selected L ~ L*, z ~ 0.2 "target" galaxies and 29 "bonus" galaxies that lie in close proximity to the QSO sightlines. We report galaxy spectroscopic redshifts accurate to +/- 30 km s-1, impact parameters, rest-frame colors, stellar masses, total star formation rates, and gas-phase interstellar medium oxygen abundances. When we compare the distribution of these galaxy characteristics to those of the general low-redshift population, we find good agreement. The L ~ L* galaxies in this sample span a diverse range of color (1.0 < u-r < 3.0), stellar mass (10^9.5 < M/M_sun < 10^11.5), and SFRs (0.01 - 20 M_sun yr-1). These optical data, along with the COS UV spectroscopy, comprise the backbone of our efforts to understand how halo gas properties may correlate with their host galaxy properties, and ultimately to uncover the processes that drive gas outflow and/or are influenced by gas inflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.