Abstract
The corticosteroid hormone induced factor (CHIF) is a member of the one-transmembrane segment protein family named FXYD, which also counts phospholemman and the Na,K-pump γ-subunit. Originally it was suggested that CHIF could induce the expression of the I Ks current when expressed in Xenopus laevis oocytes, but recently CHIF has attracted attention as a modulatory subunit of the Na,K-pump. In renal and intestinal epithelia, the expression of CHIF is dramatically up-regulated in response to aldosterone stimulation, and regulation of epithelial ion channels by CHIF is an attractive hypothesis. To study a potential regulatory effect of the CHIF subunit on KCNQ1 channels, co-expression experiments were performed in Xenopus laevis oocytes and mammalian CHO-K1 cells. Electrophysiological characterization was obtained by two-electrode voltage-clamp and patch-clamp, respectively. In both expression systems, we find that CHIF drastically modulates the KCNQ1 current; in the presence of CHIF, the KCNQ1 channels open at all membrane potentials. Thereby, CHIF is the first accessory subunit shown to be capable of modulating both the Na,K-pump and an ion channel. To find a possible physiological function of the constitutively open KCNQ1/CHIF complex, the precise localization of KCNQ1 and CHIF in distal colon and kidney from control and salt-depleted rats was determined by confocal microscopy. However, in these tissues, we did not detect an obvious overlap in expression between KCNQ1 and CHIF. In conclusion, the hormone-regulated subunit CHIF modulates the voltage sensitivity of the KCNQ channels, but so far evidence for an actual co-localization of CHIF and KCNQ1 channels in native tissue is lacking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.