Abstract

Outdoor concrete structures such as concrete facade panels and balcony frame panels are subjected to various environmental actions causing reinforcement corrosion problems. Long-term field measurement data on reinforcement corrosion in carbonated concrete on these structures was utilized in the creation of a corrosion rate regression model combining weather parameters such as temperature, relative humidity, wind-driven rain and solar radiation to corrosion rate. A versatile model capable of predicting the effect of varying environmental actions on the corrosion rates of carbonation induced corrosion was produced. Wind-driven rain was found to have the greatest impact on corrosion rate in tandem with the micro climate surrounding the building. Due to changes in air temperature, air relative humidity as well as in the amount of wind-driven rain and solar radiation, the corrosion rate on concrete facades and balconies is constantly changing. Despite the high seasonal and yearly variation, the average level of the modelled corrosion rate was quite steady on a longer 30-year perspective. This information is substantial for the long term service life design of concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.