Abstract

Inorganic scale formation is a common issue in multi-stage flash (MSF) desalination plants, significantly impacting operational efficiency. To address this, acid cleaning is frequently employed, but it can lead to severe corrosion of alloy components if not properly controlled with corrosion inhibitors. This study investigates the effectiveness of toluene-2,4-diisocyanate-4-(1H-imidazole-ly) aniline (TDIA) as a corrosion inhibitor for 304L stainless steel in a simulated acid cleaning solution (1M HCl and 3.5% NaCl). A range of tests, including electrochemical analysis, weight loss measurements, and surface characterization techniques such as AFM, EDS, and SEM, were used to assess the inhibitor's performance at temperatures of 25°C, 45°C, 65°C, and 90°C. At a concentration of 50 ppm, TDIA achieved inhibition efficiencies of around 90% at 25°C and above 80% at 90°C, demonstrating effective protection across all temperatures studied. The adsorption behavior of TDIA followed the Langmuir adsorption model, and it acted as a mixed-type inhibitor by forming a protective layer on the metal surface, which prevents corrosive agents from accessing the steel. The dual-environment testing method, simulating conditions in desalination plants, offers valuable insights into the inhibitor’s practical performance, enhancing the applicability of these findings to real-world industrial scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.