Abstract

Since, nowadays, utilizing the eco-friendly and economic corrosion inhibitors in various industries is a challenge, in this research, the corrosion behavior of carbon steel in the HCl solution by the addition of the extract of Oestrus ovis larvae as a novel bio-inhibitor has been evaluated. The electrochemical tests plus the gravimetric investigations were performed to study the corrosion property of steel substrates in various concentrations of bio-inhibitor (0.25–3 g/L). Different methods such as grazing incidence X-ray diffraction, field emission scanning electron microscopy (FESEM), and atomic force spectroscopy (AFM), were utilized to detect the chemical composition and morphology of corroded surfaces. Results of the Tafel polarization showed that the inhibition efficiency was about 57–86% with the highest value at the inhibitor concentration of 1 g/L. Electrochemical impedance spectroscopy results indicated that with the specified concentration of bio-inhibitor the electrochemical properties of samples changed based on the suggested electrical circuit. Results showed that the adsorption isotherm of the inhibitor was the Langmuir model with the cathodic-anodic performance. Both FESEM and AFM images demonstrated that the intensity of deterioration and the roughness of corroded surfaces reduced significantly at the optimum concentration of inhibitor (1 g/L). The inhibition mechanism was proposed based on experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.