Abstract

In this article, polycaprolactone (PCL) polymer nanofibers has been used in the presence of curcumin (Cur) to control the corrosion rate of temporary magnesium (alloy AZ31) implants. PCL, PCL-Cur, and sodium alginate (SA)-polyvinyl alcohol (PVA)/PCL-Cur polymer coating were produced. The mentioned nanofibers were produced using a simple and cost-effective electrospinning technique. We used different techniques to examine the properties of the produced fibers, and it was demonstrated that the hydrophobic produced nanofibers with contact angle of 135.2 degrees have continuous strands and a diameter of 171.57 nm. The presence of Cur inside PCL nanofiber not only did not have any effect on the PCL nanofiber morphology, but also it increased adhesion of the coating, and 74.59% of Cur was released after 7 days. To investigate the effects of different polymeric coatings on the surface of Mg metal in the simulated body fluid (SBF), SEM, weight measurement tests, pH measurement, Polarization, and Electrochemical Impedance Spectroscopy (EIS) has been used. During the study period there was no degradation in any part of the PCL-Cur hydrophobic polymer coating. For this coating, the percentage of weight loss, pH value, corrosion potential (Ecorr) and corrosion rate (CR) were 0.19%, 8.39, -1.388 V and 0.198 mm/y, respectively, where these values indicate the significant decrease of corrosion rate while using PCL-Cur coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.