Abstract

PurposeThe purpose of this paper is to model the corrosion rate behavior for two ferrous materials, carbon steel AISI 1020 and stainless steel AISI 304, immersed in ferric sulfate and ferric chloride solutions using D-optimal design with response surface methodology.Design/methodology/approachExperimental design addresses two factors (concentration and contact time) with multilevel categories, in order to predict and compare the corrosion rates of the studied materials immersed in flocculants solutions. A corrosion rate of specimens was calculated from mass loss determinations.FindingsThe authors used a polynomial model to fit the experimental values, thereby predicting significantly higher corrosion rates in ferric chloride solutions, as compared to ferric sulfate.Originality/valueThe authors propose a high fidelity model of the corrosion rate of each carbon steel and stainless steel material using D-optimal design with a response surface method (RSM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.